Honey bees, Pesticides, and Friendly Fire By: Fynn Mitchell

A look at how the accidental exposure of honey bees to pesticides affect their behaviour and our agricultural yields

- Pollinators, such as bees, play crucial roles in maintaining environmental welfare, and improving the crop yield of agricultural industries¹.
- Pesticides are commonly used in the agricultural industry to discourage pests from disrupting crop growth, however, pesticides also impact pollinators which can, in turn, reduce crop yields².
- Pesticide impacts on bees in particular are not only limited to increased mortality, but also
- deleterious modifications to numerous behaviours necessary for survival, such as foraging^{3,4,5,7,9}.

What are honey bees?

- Apis mellifera, or the honey bee, is a variety of insect, and is one of the quintessential pollinators throughout most of the world¹.
- Bees use hives as reproductive sanctuaries and food storage facilities⁹.
- The bee hive has a hierarchical structure dividing hive members into roles such as queens or workers².
- Forager bees acquire food using flowers which provide nectar and pollen².
 Reproduction centers around the gueen who mates with male drones².

How behaviours are tested

- Bees were exposed to a given insecticide orally via the mouth or topically via application to the thorax.
- Pesticide effects on bee mobility used open-field-like apparatuses to observe vertical displacement³.
- Pesticide effects on sucrose and water sensitivity or responsiveness were evaluated based on the propensity for bees to display their proboscis extension reflex upon exposure to water or sucrose⁵.
- Pesticide effects on olfactory learning and behaviour involved Pavlovian conditioning with a drop of sucrose acting as an unconditioned stimulus, and another odour such as coffee beans acting as a conditioned stimulus³.

What was found

- Phenyl-pyrazole insecticides, such as fipronil, neonicotinoids, such as acetamiprid, thiamethoxam, clothianidin, and imidacloprid, and organophosphorus insecticides, such as methyl parathion had the most impact on honey bee behaviour^{3,4,5,6,7,8,9,10}.
- Thiamethoxam was found to cause the least dramatic impact on behaviour, clothianidin was found to have the most dramatic impact on behaviour, and was the most harmful to bees as a whole^{5,8}.

Forag	ers search for food sources.	Food source (flower th provides nectar and po	
Successful foragers preform dances for other foragers to communicate the location of food sources.	Successful foragers return to their hive.		Bees use olfactory learning via their antennae when deciding on the best food sources and committing them to memory.

Figure 1: Behaviours affected by the tested insecticides, coloured dots correspond to those in table 1 and demonstrate which insecticides affect which behaviour^{1,2,3,4,5,6,7,8,9,10}.

Table 1: A collection of experimental study results detailing the effects of fipronil, acetamiprid, thiamethoxam, clothianidin, imidacloprid, and methyl parathion on honey bee behaviour^{3,4,5,6,7,8,9,10}.

Insecticide Class and Type	Insecticide effects
Phenyl-pyrazole Class	
Fipronil	 Reduced olfactory learning and memory performance Reduced sucrose responsiveness
Neonicotinoid Class	
Acetamiprid 🔵	 Reduced olfactory learning and memory Reduced sucrose responsiveness Increased water consumption
Thiamethoxam 🔴	 Reduced olfactory learning and memory Reduced sucrose responsiveness increased water consumption
Clothianidin 😑	 Reduced time foraging despite longer foraging flights
Imidacloprid 🦲	 Reduced time foraging despite longer foraging flights Reduced learning performance
Organophosphorus Class	
Methyl parathion	Reduced time spent in hiveReduced tendency to perform dances

The deleterious effects of these pesticides impact foraging behaviour and, in

- turn, the ability of entire hives to survive Olfactory learning and memory are important to recalling the location of
- Offactory learning and memory are important to recalling the location of substantial food sources for communication to other foragers⁷.
- Communication amongst foragers in the form of dances are critical to maximizing the hive's foraging efficiency¹⁰.
- Sucrose sensitivity is vital to role allocation of hive members, and differential impediments can result in bees with poor sensitivity foraging more, reducing foraging efficiency³.
- Mobility and activity is the foundation of foraging, reductions in mobility impede proper foraging⁸.

Making a difference

Three methods could mitigate the harmful effects of pesticides, and are as follows;

- 1. Insecticides of relatively low toxicity could be substituted for existing ones, such as changing out clothianidin for thiamethoxam¹,
- 2. Applying insecticides toxic to honeybees during plant blooming could cease¹,
- 3. Legislatively approved application methods could be more widely used¹.

These methods, alongside better law enforcement and improved training amongst

farmers, can help to curb the dangerous possibility of a world with too few pollinators¹.

Metadata: "Apis Mellifera Worker Hive Entrance 3" by Wikimedia Commons is licensed under CC BY-SA 2.5, "Beehive icons" by Noun Project is licensed under CC BY 3.0, "Flower blooming with petals in black and white vector graphics" by Free SVG is licensed under CC 0 1.0, "Bee icons" by Noun Project is licensed under CC BY 3.0, "Bee dance.svg" by Wikimedia Commons is licensed under CC BY-SA 2.5, "Tractor Fertilize Field Pesticide And Insecticide" by aqua.mech is licensed under CC BY 2.0.

1. Fikadu, Z. (2020). Pesticide use, practice and its effect on honey bee in Ethiopia: A review. International Journal of Tropical Insect Science, 40, 473-481. https://doi.org/10.1007/s13592-016-0429-7 3. El Hassani, A.K., Dacher, M., Gauthier, M., & Armengaud, C. (2005). Effects of sublethal doses of fipronii on the behaviour of the honey bee (Apis mellifera). Pharmacology Biochemistry and Behavior, 82(1), 30-39. https://doi.org/10.1016/j.pbb.2005.07.008 4. Aliouane, Y., El Hassani, A.K., Dacher, M., Gauthier, M., & Armengaud, C. (2005). Effects of sublethal doses of fipronii on the behaviour for the honey bee (Apis mellifera). Pharmacology Biochemistry and Behavior, 82(1), 30-39. https://doi.org/10.1016/j.pbb.2005.07.008 4. Aliouane, Y., El Hassani, A.K., Dacher, J., Gauthier, M., & Armengaud, C. (2008). Effects of buochemistry and Le behavior of the honey bee (Apis mellifera). Fortical Biochemistry and Le behavior. Behaviour, 1007/s10244-007-9071-8 6. Decourtye, A., Armengaud, C., (2004). Imidacloprid impairs memory and brain metabolism in the honey bee (Apis mellifera L.). Pesticide Biochemistry and Physiology, 78(2), 83-92. https://doi.org/10.1016/j.pestbp.2003.10.001 7. Decourtye, A., Lacassie, E., Pham-Delegue, M. (2003). Learning performances of honey bees (Apis mellifera L). Pesticide biochemistry and Physiology, 78(2), 83-92. https://doi.org/10.1007/s031.0.001 7. Decourtye, A., Lacassie, E., Pham-Delegue, M. (2003). Learning performances of honey bees (Apis mellifera L). Pesticides on the foraging behaviour of Apis mellifera. PloS ONE, 7:e30023. https://doi.org/10.1007/s0324.0.01371/journal.pone.0030023 9. Lambin, M., Armengaud, C., Raymond, S., & Gauthier, M. (2001). Imidacloprid-induced facilitation of the proboscie sextension reflex habituation in the honey bee. Archives of Insect Biochemistry and Physiology, 48(3), 129-134.